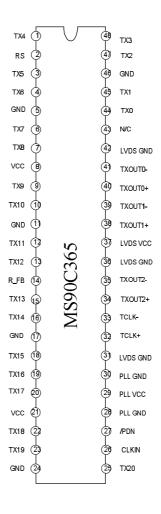


MS90C365

—— 150MHz 的 18bit 平板显示器 (FPD) LVDS 信号发送器

功能概述


MS90C365 芯片能够将 18bit 的 TTL 数据转换成 3 通道的低压差分信号 (LVDS)。时钟通道经过锁相之后与数据通道并行输出。在时钟频率为 150MHz 时,18bit 的 RGB 数据、3bit 的 LCD 时序数据以 1050Mbps 的速率在每个 LVDS 数据通道中传输。输入时钟频率为 150MHz 时,数据的传输速率为 525Mbytes/sec。MS90C365 的 R_FB 管脚可以选择在时钟的上升沿或者下降沿有效。此款芯片是解决高带宽、高速 TTL 信号层面的电磁干扰和电缆长度问题的理想产品。

特点

- 频率范围: 20-150MHz 时钟信号
- 较少的总线减少了连线尺寸和费用
- 内核供电电源 3.3V
- I0 供电电源 1.8V、3.3V 兼容
- 低功耗模式
- 支持 VGA、SVGA、XGA、SXGA
- 支持扩展频谱时钟产生
- 内部集成输入抖动滤波器
- 525Megabytes/sec 帯宽
- 减小 LVDS 摆幅来减小电磁干扰 (200mV 或 345mV LVDS 摆幅可供选择)
- PLL 不需要外部结构
- 遵循 TIA/EIA-644 LVDS 标准

管脚定义

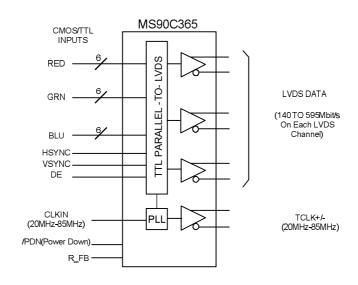
MS90C365 管脚说明

管脚名	管脚序号	管脚类型	描述
TXOUTO-, TXOUTO+	40, 41	LVDS 输出	LVDS 差分数据输出
TXOUT1-, TXOUT1+	38, 39	LVDS 输出	
TXOUT2-, TXOUT2+	34, 35	LVDS 输出	
TCLK+, TCLK-	32, 33	LVDS 输出	LVDS 差分时钟输出
TXO ~ TX6	44,45,47,48,1,3,4	输入	TTL 级数据输入。
TX7 ~ TX13	6,7,9,10,12,1315	输入	包括: 6 RED,6 GREEN,6 BLUE,3
TX14 ~ TX20	16,18,19,20,22,23,	输入	个控制信号(HSYNC, VXYNC, DE)
	25	捌八	
CLK IN	26	输入	TTL 级时钟输入。

iSweek www.isweek.cn

公司名: 深圳市工采网络科技有限公司

电话: +86-0755-83279017-8007


地址: 广东省深圳市南山区高新南一道中国科技开发院3号楼16层

传真: + 86-0755-83279017-8007

邮箱: salesz@isweek.com

/PDN	27	输入	TTL 级输入。高:正常工作			
		1107人	低: 低功耗			
R_FB	14	 输入	选择有效边沿。			
		捌八	高:上升沿 低:下降沿			
RS	2	输入	LVDS 摆幅控制(正常 RS=VCC,小			
		捌八	摆幅 RS=GND)			
VCC	8	电源	TTL 级输入电源			
IOVCC	21	I0 电源	IO 口电源, 1.8V 和 3.3V 兼容			
GND	5,11,17,24,46	地	TTL 级输入地			
LVDS VCC	37	电源	LVDS 输出电源			
LVDS GND	31,36,42	地	LVDS 输出地			
PLL VCC	29	电源	PLL 电源			
PLL GND	28,30	地	PLL 地			

结构框图

推荐工作条件

 电源电压 (VCC)
 -0.3V - 4.0V

 CMOS/TTL 输入电压
 -0.3V - (VCC+0.3V)

 CMOS/TTL 输出电压
 -0.3V - (VCC+0.3V)

结点温度 +150°C

温度范围 -65° C - 150° C

MS90C365 1.9W

Sweek www.isweek.cn

最大功耗 (25°C)

电学特性

符号	参数	条件	Min	Тур	Max	Units
V_{IH}	输入高电平		2.0		V_{CC}	V
V_{IL}	输入低电平		GND		0.8	V
I_{IN}	输入电流	0≪V IN≪VCC			±10	uA
I_{PD}	低功耗状态电流	R_FB=V _{CC} , V _{IH} =V _{CC}			10	uA

开关特性

符号	参数		Min	Тур	Max	Units
T _{TCIT}	时钟信号过渡时间				5. 0	ns
T _{TCP}	时钟周期		11.76	T	50	ns
T_{TCH}	时钟高电平持续时间		0. 35T	0. 5T	0. 65T	ns
T _{TCL}	时钟低电平持续时间		0. 35T	0. 5T	0. 65T	ns
T _{TS}	TTL 数据建立时间		2.5			ns
T _{TH}	TTL 数据保持时间		0			ns
T_{LVT}	LVDS 信号转换时间			0.6		ns
T_{TCD}	时钟输入与差分时钟信号	号延迟		2T/7+2.3		ns
T _{TDP1}	输出数据位 0	150MHz	-0.2	0	+0.2	ns
T _{TDP0}	输出数据位1			0.95		ns
T _{TDP6}	输出数据位 2			1. 90		ns
T_{TDP5}	输出数据位3			2.86		ns
T_{TDP4}	输出数据位 4			3. 81		ns
T _{TDP3}	输出数据位 5			4. 76		ns
T_{TDP2}	输出数据位 6			5. 71		ns
T _{TDP1}	输出数据位 0	$100 \mathrm{MHz}$	-0.2	0	+0.2	ns
T_{TDP0}	输出数据位1			1. 43		ns
T _{TDP6}	输出数据位 2			2.86		ns
T _{TDP5}	输出数据位3			4. 29		ns
T_{TDP4}	输出数据位 4			5. 71		ns
T _{TDP3}	输出数据位 5			7. 14		ns
T _{TDP2}	输出数据位 6			8. 47		ns
T _{TDP1}	输出数据位 0	85MHz	-0.2	0	+0.2	ns
T_{TDP0}	输出数据位1			1. 68		ns
T _{TDP6}	输出数据位 2			3. 36		ns
T _{TDP5}	输出数据位3			5. 04		ns
T _{TDP4}	输出数据位 4			6. 72		ns
T _{TDP3}	输出数据位 5			8. 40		ns
T _{TDP2}	输出数据位 6			10.08		ns
T_{TDP1}	输出数据位 0	50MHz	-0.2	0	+0.2	ns
T_{TDPO}	输出数据位1			2.86		ns

			1	1	1	1
T _{TDP6}	输出数据位 2			5. 71		ns
T _{TDP5}	输出数据位3			8. 57		ns
T _{TDP4}	输出数据位 4			11. 42		ns
T _{TDP3}	输出数据位 5			14. 28		ns
T_{TDP2}	输出数据位 6			17. 14		ns
T_{TDP1}	输出数据位 0	35MHz	-0.2	0	+0.2	ns
T_{TDP0}	输出数据位1			4. 08		ns
T _{TDP6}	输出数据位 2			8. 16		ns
T _{TDP5}	输出数据位3			12. 24		ns
T _{TDP4}	输出数据位 4			16. 33		ns
T _{TDP3}	输出数据位 5			20. 41		ns
T_{TDP2}	输出数据位 6			24. 49		ns
T_{TDP1}	输出数据位 0	20MHz	-0.2	0	+0.2	ns
T _{TDP0}	输出数据位1			7. 14		ns
T _{TDP6}	输出数据位 2			14. 28		ns
T _{TDP5}	输出数据位3			21.42		ns
T _{TDP4}	输出数据位 4			28. 57		ns
T _{TDP3}	输出数据位 5			35. 71		ns
T _{TDP2}	输出数据位 6			42.86		ns
T _{TPLLS}	锁相环设置时间	<u> </u>	_	_	10	ms

直流特性

符号	参数	条件	Min	Тур	Max	Units
V _{OD}	差分输出电压 (RS=VCC)		250	345	450	mV
	差分输出电压(RS=GND)		100	200	300	
△V _{OD}		DI -100 O			35	mV
V _{OC}	共模电压(RS=VCC)	RL=100 Ω	1.125	1.25	1.375	V
	共模电压(RS=GND)			1.20		
△V _{OC}					35	mV
I_{0Z}		/PDN=OV			±10	uA

电源电流

符号	参数	条件	Тур	Max	Units
Icctg		f=20MHz	18		mA
		f=35MHz	25		mA
	供电电流	f=50MHz	28		mA
	16 Grayscale	f=85MHz	30		mA
		f=100MHz	33		mA
		f=150MHz	36		mA
I _{CCTP}	Power down 时的电流	/PDN=OV	21		uA

iSweek www.isweek.cn

公司名: 深圳市工采网络科技有限公司

地址: 广东省深圳市南山区高新南一道中国科技开发院3号楼16层

电话: +86-0755-83279017-8007

传真: +86-0755-83279017-8007

邮箱: salesz@isweek.com

交流时序图

图 1.测试模板 "Worst Case Pattern"

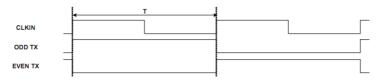


图 2.测试模板"16 Grayscale Test Pattern"

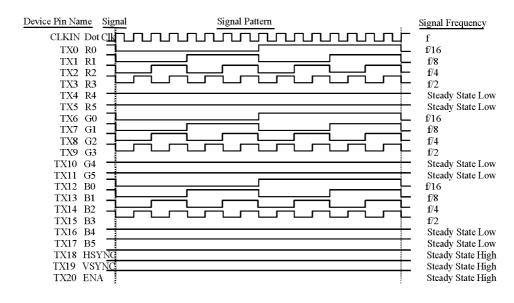
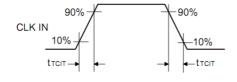
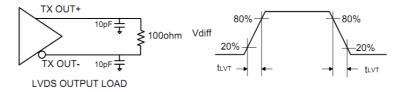
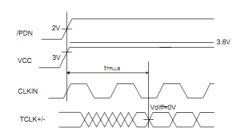


图 3.TTL 输入


图 4.LVDS 输出

 $V_{diff} = (TXOUT+) - (TXOUT-)$

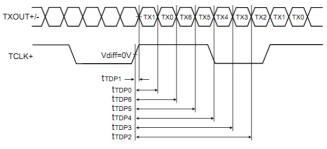


图 5.锁相环设置时间

图 6. 发送器状态

Vdiff= (TXOUT+) - (TXOUT-), ······ (TCLK+) - (TCLK-)

图 7. 并行 TTL 输入数据与 LVDS 输出数据匹配关系

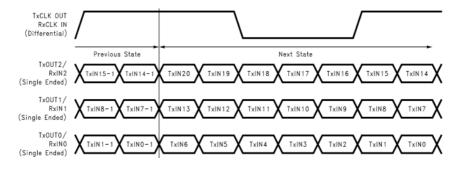


图 8. 上升、下降时间与高电平、低电平保持时间

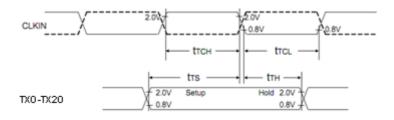
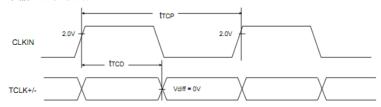
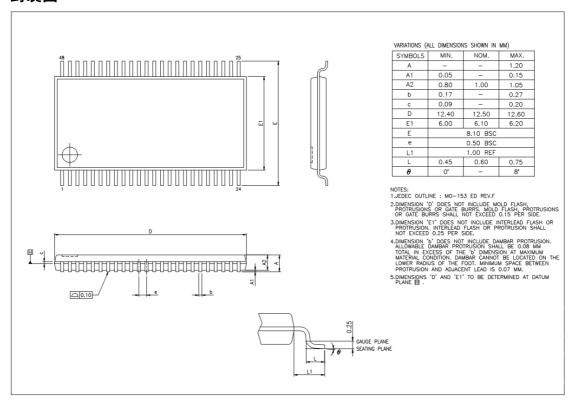




图 9. 输入时钟与输出时钟间延迟

封装图

